首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   0篇
  国内免费   19篇
安全科学   1篇
废物处理   40篇
环保管理   2篇
综合类   31篇
基础理论   12篇
污染及防治   48篇
评价与监测   2篇
社会与环境   7篇
灾害及防治   1篇
  2021年   2篇
  2019年   1篇
  2018年   6篇
  2017年   7篇
  2016年   5篇
  2015年   3篇
  2014年   4篇
  2013年   16篇
  2012年   13篇
  2011年   12篇
  2010年   3篇
  2009年   13篇
  2008年   9篇
  2007年   18篇
  2006年   6篇
  2005年   2篇
  2004年   8篇
  2003年   3篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1990年   2篇
  1985年   1篇
  1970年   1篇
排序方式: 共有144条查询结果,搜索用时 93 毫秒
21.
Life cycle assessment for sewage sludge treatment was carried out by estimating the environmental and economic impacts of the six alternative scenarios most often used in Japan: dewatering, composting, drying, incineration, incinerated ash melting and dewatered sludge melting, each with or without digestion. Three end-of-life treatments were also studied: landfilling, agricultural application and building material application. The results demonstrate that sewage sludge digestion can reduce the environmental load and cost through reduced dry matter volume. The global warming potential (GWP) generated from incineration and melting processes can be significantly reduced through the reuse of waste heat for electricity and/or heat generation. Equipment production in scenarios except dewatering has an important effect on GWP, whereas the contribution of construction is negligible. In addition, the results show that the dewatering scenario has the highest impact on land use and cost, the drying scenario has the highest impact on GWP and acidification, and the incinerated ash melting scenario has the highest impact on human toxicity due to re-emissions of heavy metals from incinerated ash in the melting unit process. On the contrary, the dewatering, composting and incineration scenarios generate the lowest impact on human toxicity, land use and acidification, respectively, and the incinerated ash melting scenario has the lowest impact on GWP and cost. Heavy metals released from atmospheric effluents generated the highest human toxicity impact, with the effect of dioxin emissions being significantly lower. This study proved that the dewatered sludge melting scenario is an environmentally optimal and economically affordable method.  相似文献   
22.
Heterogeneous diffusion in different regions of a fractured granodiorite from Japan has been observed and measured through the use of X-ray absorption imaging. These regions include gouge-filled fractures, recrystallized fracture-filling material and hydrothermally altered matrix. With the X-ray absorption imaging technique, porosity, relative concentration, and relative mass of an iodine tracer were imaged in two dimensions with a sub-millimeter pixel size. Because portions of the samples analyzed have relatively low porosity values, imaging errors can potentially impact the results. For this reason, efforts were made to better understand and quantify this error. Based on the X-ray data, pore diffusion coefficients (Dp) for the different regions were estimated assuming a single diffusion rate and a lognormal multirate distribution of Dp. Results show Dp for the gouge-filled fractures are over an order of magnitude greater than those of the recrystallized fracture-filling material, which in turn is approximately two times greater than those for the altered matrix. The recrystallized fracture-filling material was found to exhibit the greatest degree of variability. The results of these experiments also provide evidence that diffusion from advective zones in fractures through the gouge-filled fractures and recrystallized fracture-filling material could increase the pore space available for matrix diffusion. This evidence is important for understanding the performance of potential nuclear waste repositories in crystalline rocks as diffusion is thought to be an important retardation mechanism for radionuclides.  相似文献   
23.
Kim YJ  Osako M 《Chemosphere》2003,51(5):387-395
In order to evaluate the factors affecting leachability of hydrophobic organic pollutants (HOPs), we performed leaching tests under a variety of conditions using sandy soil contaminated with phenanthrene and pyrene. The results obtained were: (1) the shaking time, temperature, and dissolved humic matter (DHM, as coexisting matter) increased leachability; (2) ionic strength reduced leachability; and (3) the liquid-to-solid ratio and pH level had no effect on leaching concentration of HOPs. In DHM-added leaching tests assuming equilibrium with HOPs, DHM, and solid matrix, the partitioning (binding) coefficient of HOPs to DHM was accurately calculated with the equations proposed in this study. While we recommend taking into consideration the coexistence of DHM, it is difficult to use universally because its properties differ according to origin and extracting method. It is therefore reasonable to use an alternative reagent having an effect similar to that of DHM.  相似文献   
24.
The environmental impact of two biocide-free antifouling paints, fluoropolymer and silicone types, painted on a test cylinder was assessed using a battery of ecotoxicity test and chemical analyses for organic micro-pollutants such as perfluoroalkyl substances (PFAS). A biocide paint containing zinc pyrithione (ZnPT2) and cuprous oxide was assessed as a positive control. A standardized laboratory rotating-cylinder method using each test cylinder with artificial seawater was performed for 45 days. After 1?h rotation, the leaked seawater was subjected for bioassay and chemical analyses twice weekly. The seawater extracts from the biocide paint showed adverse effects on bacteria, algae, and crustaceans, but those from the biocide-free paints did not. The leakage seawater from biocide-free paints, after 7-day continuous rotation, contained the same concentration levels of PFAS as blank seawater used to conduct the tests. Thus, no significant toxicities of the biocide-free paints were found under the conditions of this study. Simultaneous analysis of ZnPT2 and copper pyrithione (CuPT2) was developed using an HPLC with a polymeric resin column, showing that ZnPT2 was converted to CuPT2 by trans-chelation in the leakage seawater from the positive control paint. The experimental results using a laboratory rotating-cylinder method demonstrated that biocide-free paints did not markedly affect three species tested and no PFAS was detected. In contrast, biocide paint was significantly toxic to test species and toxicity of the extract on bacteria was partly responsible for CuPT2 produced in leakage seawater. Thus, a laboratory rotating-cylinder method may be applied for ecotoxicological assessment of antifouling paints.  相似文献   
25.
The bumblebee Bombus terrestris is not only an effective pollinator, but also a potential invasive alien species outside its native range. Recently, nearly 30% of queens of the Japanese native species Bombus hypocrita sapporoensis and B. hypocrita hypocrita were estimated to copulate with B. terrestris males in the field, suggesting that indigenous bumblebees could be genetically deteriorated through hybrid production with the introduced species. In this study, we evaluated hybrid production between the introduced B. terrestris and the indigenous B. hypocrita sapporoensis under laboratory conditions. The hatching rate of eggs derived from interspecific matings was 0% and 8.6% depending on the direction of the cross, which was significantly lower than that from intraspecific matings of B. terrestris (76.9%) and B. hypocrita sapporoensis (78.9%). Genetic studies using microsatellite markers revealed that both haploid and diploid individuals were present in the egg stage, whereas all hatched larvae were haploid. In addition, histological studies revealed that eggs derived from interspecific matings terminated development 2 days after oviposition. These results strongly suggested that eggs derived from interspecific matings are inviable due to post-mating isolation mechanisms. Mass release of exotic pollinators could cause serious population declines of native bumblebee species.  相似文献   
26.
Eelgrass, Zostera marina, produces two types of shoots: morphologically simple vegetative shoots and highly branched flowering (reproductive) shoots, the latter found only in summer months. We examined whether the abundance and diversity of mobile epifaunal assemblage are affected by the presence of flowering shoots in an eelgrass meadow of Otsuchi Bay, northeastern Japan. Comparisons of epifauna in natural vegetation revealed that density and species richness did not differ significantly between sites consisting of both flowering and vegetative shoots, and those only of vegetative shoots. A transplant experiment, conducted to examine the colonization rates of epifauna to defaunated eelgrass planted with different combination of vegetative and flowering shoots, showed no obvious variation in abundance and species richness. At species level, the density of some species such as a tanaid Zeuxo sp. and a polychaete Platynereis sp. was higher at sites and/or treatments with flowering shoots, whereas that of some gastropods, such as Lirularia iridescens and Siphonacmea oblongata was higher at sites without flowering shoots. The species-specific response led to dissimilarity of epifaunal assemblage between sites and among treatments with different densities of vegetative and flowering shoots. Similar patterns observed for natural vegetation and the transplant experiment suggest that the variation in assemblage structure is caused by habitat selection of each species, for example, the utilization of flowering shoots as feeding ground and nursery by Zeuxo sp.  相似文献   
27.
The conversion rates of SO2 to SO2-4 and NO2 to HNO3+NO3- are estimated from the field-data obtained in Beijing in summer, 1988. The results show that the conversion rate of NO2 is about four times as much as that of SO2; The conversion rates have a diurnal variation in a day. On the average, the rate of SO2 is estimated to be 4.7% h-1 during the daytime and 3.4% h-1 during the nighttime. Similarly, the rate of NO2 is estimated to be 17.2% h-1 and 12% h-1 respectively.  相似文献   
28.
Wastewater disinfection is practiced with the goal of reducing risks of human exposure to pathogenic microorganisms. In most circumstances, the efficacy of a wastewater disinfection process is regulated and monitored based on measurements of the responses of indicator bacteria. However, inactivation of indicator bacteria does not guarantee an acceptable degree of inactivation among other waterborne microorganisms (e.g., microbial pathogens). Undisinfected effluent samples from several municipal wastewater treatment facilities were collected for analysis. Facilities were selected to provide a broad spectrum of effluent quality, particularly as related to nitrogenous compounds. Samples were subjected to bench-scale chlorination and dechlorination and UV irradiation under conditions that allowed compliance with relevant discharge regulations and such that disinfectant exposures could be accurately quantified. Disinfected samples were subjected to a battery of assays to assess the immediate and long-term effects of wastewater disinfection on waterborne bacteria and viruses. In general, (viable) bacterial populations showed an immediate decline as a result of disinfectant exposure; however, incubation of disinfected samples under conditions that were designed to mimic the conditions in a receiving stream resulted in substantial recovery of the total bacterial community. The bacterial groups that are commonly used as indicators do not provide an accurate representation of the response of the bacterial community to disinfectant exposure and subsequent recovery in the environment. UV irradiation and chlorination/dechlorination both accomplished measurable inactivation of indigenous phage; however, the extent of inactivation was fairly modest under the conditions of disinfection used in this study. UV irradiation was consistently more effective as a virucide than chlorination/dechlorination under the conditions of application, based on measurements of virus (phage) diversity and concentration. Taken together, and when considered in conjunction with previously published research, the results of these experiments illustrate several important limitations of common disinfection processes as applied in the treatment of municipal wastewaters. In general, it is not clear that conventional disinfection processes, as commonly implemented, are effective for control of the risks of disease transmission, particularly those associated with viral pathogens. Microbial quality in receiving streams may not be substantially improved by the application of these disinfection processes; under some circumstances, an argument can be made that disinfection may actually yield a decrease in effluent and receiving water quality. Decisions regarding the need for effluent disinfection must account for site-specific characteristics, but it is not clear that disinfection of municipal wastewater effluents is necessary or beneficial for all facilities. When direct human contact or ingestion of municipal wastewater effluents is likely, disinfection may be necessary. Under these circumstances, UV irradiation appears to be superior to chlorination in terms of microbial quality and chemistry and toxicology. This advantage is particularly evident in effluents that contain appreciable quantities of ammonia-nitrogen or organic nitrogen.  相似文献   
29.
The original-type UNIFAC model was used to predict the environmentally important physico-chemical properties of PCDDs/DFs, such as aqueous solubility, Henry's law constant, and 1-octanol/water partition coefficient, through the UNIFAC-derived infinite dilution activity coefficient. In this application, we suggest an alternative approximation that the aromatic ether group AC-O in PCDD/DF molecules is replaced with the aliphatic ether group CH-O, because the AC-O group is not available in the conventional UNIFAC model. With this approximation, the ability of the UNIFAC model to predict those properties was examined by comparing with experimental data. The UNIFAC model provided comparatively good estimation results. From these results, it is shown that the alternative approximation is useful for the UNIFAC estimation of physico-chemical properties for PCDDs/DFs. Furthermore, the predicted solubilities of 2,3,7,8-T4CDD and O8CDD in organic solvents and the co-solvency effect on solubility of PCDDs in methanol/water mixture indicate that the UNIFAC calculation presented here could well predict the physico-chemical properties of PCDDs/DFs in various solution conditions.  相似文献   
30.
Kim YJ  Lee DH  Osako M 《Chemosphere》2002,47(6):599-605
The effect of dissolved humic matters (DHM) on the leachability of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/F) in fly ash was studied theoretically and in laboratorial condition to verify the previous results for pilot and field experiment of incineration residues landfill. In theoretical review, it was shown that DHM could influence the actual solubility and leachability of PCDD/F. The higher concentration of DHM showed the higher leachability of PCDD/F. In the leaching test, three different DHM concentrations and pHs of solutions were adopted to fly ash samples imaging the various characteristics of municipal solid waste leachate. It was proved experimentally that the leachability of PCDD/F increased with increasing DHM concentration in all pH conditions. The highest leachability was shown at the highest pH. Isomer distribution patterns of PCDD/F in all leachates were similar in all pH conditions. It backed up the distribution theory of PCDD/F between DHM and water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号